Xylan fluoropolymer coatings are wear-resistant, low-friction materials that improve the life of bearings and wear surfaces. By reducing metal-to-metal contact at interface surfaces, the coatings minimize the points of adhesive wear and heat buildup.

These coatings are particularly important when parts are operating on the outer limits of their fluid lubrication, the so-called “boundary” lubrication phenomenon, or during break-in periods. Find out which coatings are best suited to your bearing applications and how you should apply them.
Why coatings are used on bearings

Low-friction coatings are used for two reasons. The first is as a backup lubricant for circumstances where the primary (fluid) lubricant could fail or is insufficient to prevent surface-to-surface contact. This often occurs when machinery is in a start-up or reversing condition, or when equipment is new and in its "break-in" period. Occasionally, these conditions happen when a conventional hydrodynamic bearing is momentarily overloaded and the hydrodynamic film of oil is partially pressed aside, permitting mixed lubrication or, worse, boundary lubrication.

Adhesive wear occurs when asperities on two surfaces come in contact and move over each other. The pressure of the load and the heat generated by the movement tend to weld the asperities momentarily. As the surfaces move, the welds are broken and small particles are ripped out of the surfaces.

To prevent surface-to-surface contact, designers can specify an application of low-friction coatings to minimize bearing wear under these conditions.

The second reason for using low-friction coatings is as the primary lubricant for a bearing where fluids cannot be used. This most frequently occurs with nonmetallic bearings, such as those made of fiber, plastic, composites, or paper. In these cases, the coating reduces friction in the bearing which, in turn, reduces the heat and wear on the coating.

Where coatings improve bearing performance

Some bearing applications benefit more than others from a coating. For example:

- **Length-to-diameter ratio:** Hydrodynamic lubrication in journal bearings is best supported when the length-to-diameter ratio of the bearing is greater than 1. These types of bearings are found on line shafts, prop shafts, turbine shafts, pumps, machine tools, and some axle bearings. Side leakage from these bearings is not so much that there is a resulting degradation of the oil film. However, in many applications — notably engine bearings — the l/d ratio of the bearing is 0.5 or less. Thus, side leakage can be great enough so that metal-to-metal contact in the bearing can occur, particularly in moments of high loads.

A coating on the bearing surface can prevent momentary contact between the journal and the shaft. As a starting point in bearing design, we suggest that, when the l/d ratio is less than 0.4, you consider using a coating for fail-safe protection.

- **Slow-turning bearings:** Journal bearings where shafts turn at speeds that are less than 600 rpm are usually built with medium fits. An accepted rule of thumb is to use a diametral clearance that is 0.002 + 0.001 X diameter inches. Under these circumstances, overloads can result in momentary boundary lubrication conditions, increased friction (and heat), and increased wear. This also applies to bearings that are frequently stopped, started, and reversed. Unless a hydrodynamic lift is provided to keep the journal "floating" during the period when it is not rotating, boundary lubrication conditions can occur.

- **Increasing vibration damping:** Lubrication fluids contribute to the overall vibration-damping properties of a rotating mechanism. The degree to which they do this depends, in part, on the film thickness.

If a low-friction coating is used, additional vibration damping is gained. Again, the degree depends on the thickness of the coating. To date, we know of no studies that determine the magnitude of the damping property of dry-lubricant coatings. It may never be large. However, where smoothness is paramount, the use of a coating can be worthwhile.

- **Infrequent use:** In bearings that operate infrequently, fluid lubricants drain away from the loaded area and the bearings may experience severe wear during start-up. A low-friction coating can prevent the metal-to-metal contact and wear that takes place during start-up.

Selecting coatings for bearings

Reducing friction and supporting bearing loads are the criteria for any coating that is
used in a bearing. To this end, Whitford formu-
lators have developed coatings that are
based on tough resins, into which dry lubri-
cants such as polytetrafluoroethylene (PTFE),
moly disulfide, and graphite are added.

PTFE is the premier low-friction material. A
coating with PTFE may improve the friction en-
countered. On the negative side, coatings
with low-coefficients of friction are those with
relatively high quantities of PTFE, which is soft
and has little wear resistance. Thus, coatings
with very low friction may also be soft and less
wear-resistant.

Moly disulfide enables the coating to bear
high loads. Even under low-slip velocities, moly can carry extreme loads.

Graphite is perhaps the oldest known dry
lubricant, used in coatings where ambient
temperatures are high, or where PTFE and
moly cannot be used. For example: the Nu-
clear Regulatory Agency does not permit the
use of lubricants that contain PTFE or moly
because they break down if irradiated. So
Whitford uses graphite as the lubricant in
such applications.

Whitford provides coatings that contain
PTFE (for low friction), plus moly disulfide (for
low friction and load-bearing capacity), or
graphite (for high temperatures). These are
one-coat materials that can be applied to al-
most any bearing material (except polyolefin
resins). Depending on the formulation, they
are continuously stable at temperatures as
high as 500°F/260°C, or 550°F/288°C for
short periods of time.

Applying coatings to
bearing surfaces

Almost any solid material that is used for
bearings can be coated.

Metals: Suitable substrates include car-
bon and stainless steel, wrought and cast alu-
minum, copper and its alloys, titanium. Take
special precautions with powder metal parts.
Many of these parts are treated with resinous
impregnates that are trapped within the poros-
ity of the parts. To coat them successfully, pre-
bake the parts at a temperature that is higher
than the anticipated cure temperature for the
coating. Contaminants that bleed to the sur-
face during the bake must be removed. Then
the parts are ready for coating.

Die-cast parts are another special case.
These components are typically cast with al-
loys that can be porous. When coated parts
are placed in an oven and heated, trapped
gases in internal cavities expand and erupt.
When cured over 400°F/205°C, these parts
may have numerous eruptions on the coated
surface. To avoid this, preheat the parts to the
cure temperature to produce the eruptions
first, then coat them. Otherwise, cure the parts
under 400°F/205°C.

Applications of coatings
to bearing-type surfaces

Flat sliding surfaces
• Actuators
• Launch rails
• Lead screws
• Pneumatic cylinders
• Thrust washers
• Valve stems

Journal bearings
• Connecting rod bearings
• Crankshaft main bearings
• Fractional horsepower motor shafts
• Power tools

Rolling element bearings
• High-speed shafts
• Motor shafts
• Needle bearing cages

Bearings for special applications
• Aircraft bearings
• Ball screws
• Blowout preventor pistons
• Hinges
• Servo motors
• Swash plates
• Tension leg adjusters
Plastics: Most “engineering” plastics can be coated, including nylon, PEEK, PEK, PPS, ABS, polycarbonate, epoxy, polyester, and phenolic. The exceptions are polyolefins and fluoropolymers, which have natural release properties. Also, vinyl materials that contain a high content of plasticizer can cause adhesion problems. Coated plastic parts must be cured at temperatures well below the softening temperature of the substrate to avoid distortion and polymer degradation.

Elastomers: Most elastomeric parts that are not expected to elongate more than 30% in service can be coated.

Surface considerations

Here are ways to improve the wear resistance of a coating in bearing applications.

Which surface to coat: In some cases, a slight improvement in lubricity and wear life is gained by coating both surfaces of mating parts. If only one surface can be coated however, choose the surface with the greater swept area.

Different mating materials: In many cases, two dissimilar materials are used in a bearing. In such situations, coat the softer of the two materials because, if boundary lubrication occurs, this is the one that will suffer the greater damage.

Surface roughness: The roughness of a mating surface also has an effect on coating wear. The optimum surface has a roughness of 8-12 µin. rms. Surprisingly, hyper-smooth surfaces (less than 4 µin.) produce higher wear rates than those in the optimum range — even those in the 15-30 µin. range which is typical for machined parts. The reason for this is that the hyper-smooth surface permits less transfer of PTFE to the mating surface and friction increases. Surfaces that are rougher than 30 µin. also result in high wear rates.

Maximum hardness: The temperature at which a coating is cured can influence its hardness. Where substrates permit, we recommend that coatings in bearing applications be cured at or near their upper limit (typically 600 to 750°F/315° to 400°C).

How to contact Whitford:

Whitford manufactures in 7 countries, has employees in 7 more and agents in an additional 25. For more information, please contact your Whitford representative or the nearest Whitford office (see our website: whitfordww.com) or email: sales@whitfordww.com.

Xylan Coatings for Bearings

<table>
<thead>
<tr>
<th>Property</th>
<th>1010</th>
<th>1014</th>
<th>1052</th>
<th>1054</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry lubricant</td>
<td>PTFE</td>
<td>PTFE</td>
<td>PTFE/Moly</td>
<td>Graphite</td>
</tr>
<tr>
<td>Temperature limit °F/°C</td>
<td>500°F/260°C</td>
<td>500°F/260°C</td>
<td>500°F/260°C</td>
<td>500°F/260°C</td>
</tr>
<tr>
<td>Cure temperature °F</td>
<td>400-600°F</td>
<td>400-600°F</td>
<td>400-600°F</td>
<td>400-600°F</td>
</tr>
<tr>
<td>Cure temperature °C</td>
<td>205-316°C</td>
<td>205-316°C</td>
<td>205-315°C</td>
<td>205-315°C</td>
</tr>
<tr>
<td>Hardness</td>
<td>2H</td>
<td>4H</td>
<td>4H</td>
<td>4H</td>
</tr>
<tr>
<td>Max. thickness/coat* (mil)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Characteristics</td>
<td>Lowest friction</td>
<td>Corrosion-resistant</td>
<td>Anti-galling</td>
<td>Wet</td>
</tr>
</tbody>
</table>

* Can be used from 0.2 to 3.0 mils

Xylan is a registered trademark of Whitford. © Whitford 2008 WC7/08

NON-WARRANTY: THE INFORMATION PRESENTED IN THIS PUBLICATION IS BASED UPON THE RESEARCH AND EXPERIENCE OF WHITFORD. NO REPRESENTATION OR WARRANTY IS MADE, HOWEVER, CONCERNING THE ACCURACY OR COMPLETENESS OF THE INFORMATION PRESENTED IN THIS PUBLICATION. WHITFORD MAKES NO WARRANTY OR REPRESENTATION OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE, AND NO WARRANTY OR REPRESENTATION SHALL BE IMPLIED BY LAW OR OTHERWISE. ANY PRODUCTS SOLD BY WHITFORD ARE NOT WARRANTED AS SUITABLE FOR ANY PARTICULAR PURPOSE TO THE BUYER. THE SUITABILITY OF ANY PRODUCTS FOR ANY PURPOSE PARTICULAR TO THE BUYER IS FOR THE BUYER TO DETERMINE. WHITFORD ASSUMES NO RESPONSIBILITY FOR THE SELECTION OF PRODUCTS SUITABLE TO THE PARTICULAR PURPOSES OF ANY PARTICULAR BUYER. WHITFORD SHALL IN NO EVENT BE LIABLE FOR ANY SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES.